Possible present day habitats for life on Mars (Including potential Mars special regions): Difference between revisions

no edit summary
No edit summary
No edit summary
Line 327:
However, when partially shaded from the UV light, as it is in its natural habitats in Antarctica, both fungus and algae survived, and the algae remained photosynthetically active throughout. Also new growth of the lichen was observed. Photosynthetic activity continued to increase for the duration of the experiment, showing that the lichen adapted to the Mars conditions.<ref name="DLRLichenHabitable"/>
 
This is remarkable as the fungus is an aerobe, growing in an atmosphere with no appreciable amount of oxygen and 95% CO<sub>2</sub>. It seems that the algae provides it with enough oxygen to survive. The lichen was grown in Sulfatic Mars Regolith Simulant - igneous rock with composition similar to Mars meteorites, consisting of gabbro and olivine, to which quartz and anhydrous iron oxide hematite (the only thermodynamically stable iron oxide under present day Mars conditions) were added. It also contains gypsum and geothite, and was crushed to simulate the martian regolith. This was an ice free environment. They found that photosynthetic activity was strongly correlated with the beginning and the end of the simulated Martian day. Those are times when atmospheric water vapour could condense on the soil and be absorbed by it, and could probably also form cold brines with the salts in the simulated martian regolith. The pressure used for the experiment was 700 - 800 Pa, above the triple point of pure water at 600 Pa and consistent with the conditions measured by Curiosity in Gale crater.<ref name="DLRLichenHabitable">{{cite journal|url=https://core.ac.uk/download/pdf/31019036.pdf|last1=de Vera|first1=Jean-Pierre|last2=Schulze-Makuch|first2=Dirk|last3=Khan|first3=Afshin|last4=Lorek|first4=Andreas|last5=Koncz|first5=Alexander|last6=Möhlmann|first6=Diedrich|last7=Spohn|first7=Tilman|title=Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days|journal=Planetary and Space Science|volume=98|year=2014|pages=182–190|issn=0032-0633|doi=10.1016/j.pss.2013.07.014|bibcode=2014P&SS...98..182D|quote=This work strongly supports the interconnected notions (i) that terrestrial life most likely can adapt physiologically to live on Mars (hence justifying stringent measures to prevent human activities from contaminating / infecting Mars with terrestrial organisms); (ii) that in searching for extant life on Mars we should focus on "protected putative habitats"; and (ii) that early-originating (Noachian period) indigenous Martian life might still survive in such micro-niches despite Mars' cooling and drying during the last 4 billion years|}}</ref>
 
The experimenters concluded that it is likely that some lichens and cyanobacteria can adapt to Mars conditions, taking advantage of the night time humidity, and that it is possible that life from early Mars could have adapted to these conditions and still survive today in microniches on the surface.