Lichens, cyanobacteria and molds growing in humidity of simulated Martian atmosphere: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 2:
A series of experiments by DLR (German aerospace company) in Mars simulation chambers and on the ISS show that some Earth life (Lichens and strains of chrooccocidiopsis, a green algae) can survive Mars surface conditions and photosynthesize and metabolize, slowly, in absence of any water at all. They could make use of the humidity of the Mars atmosphere.<ref name="dlrMarsStudy">[http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-3409/ Surviving the conditions on Mars] DLR, 26 April 2012</ref><ref name="sciencedirect.com">{{cite journal|url = http://www.sciencedirect.com/science/article/pii/S1754504812000098 | doi=10.1016/j.funeco.2012.01.008 | volume=5 | issue=4 | title=Lichens as survivors in space and on Mars | year=2012 | journal=Fungal Ecology | pages=472–479 | last1 = de Vera | first1 = Jean-Pierre}}</ref><ref name="norlx51.nordita.org">R. de la Torre Noetzel, F.J. Sanchez Inigo, E. Rabbow, G. Horneck, J. P. de Vera, L.G. Sancho [http://norlx51.nordita.org/~brandenb/astrobiology/EANA2012/single_abstracts/Delatorre.pdf Survival of lichens to simulated Mars conditions] {{webarchive|url=https://web.archive.org/web/20130603191033/http://norlx51.nordita.org/~brandenb/astrobiology/EANA2012/single_abstracts/Delatorre.pdf |date=2013-06-03 }}</ref><ref name="Issue 1 2012, Pages 102">{{cite journal|url = http://www.sciencedirect.com/science/article/pii/S0032063312002425 | doi=10.1016/j.pss.2012.08.005 | bibcode=2012P&SS...72..102S | volume=72 | issue=1 | title=The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile | year=2012 | journal=Planetary and Space Science | pages=102–110 | last1 = Sánchez | first1 = F.J.}}</ref><ref name="BilliViaggiu2011">{{cite journal|url=https://scholar.google.com/scholar_url?url=http://www.researchgate.net/profile/Charles_Cockell/publication/49810974_Damage_escape_and_repair_in_dried_Chroococcidiopsis_spp._from_hot_and_cold_deserts_exposed_to_simulated_space_and_martian_conditions/links/0c960530543245cde9000000.pdf&hl=en&sa=T&oi=gsb-gga&ct=res&cd=1&ei=M2AqVeLzG-fq0AG5xYGACA&scisig=AAGBfm1aHrkKehQaYpPYGQ9mjRxVTxPS0Q|last1=Billi|first1=Daniela|last2=Viaggiu|first2=Emanuela|last3=Cockell|first3=Charles S.|last4=Rabbow|first4=Elke|last5=Horneck|first5=Gerda|last6=Onofri|first6=Silvano|title=Damage Escape and Repair in DriedChroococcidiopsisspp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions|journal=Astrobiology|volume=11|issue=1|year=2011|pages=65–73|issn=1531-1074|doi=10.1089/ast.2009.0430|pmid=21294638|bibcode=2011AsBio..11...65B}}</ref> Though the absolute humidity is low, the relative humidity at night reaches 100% because of the large day / night swings in atmospheric pressure and temperature. This is relevant to the search for native life on Mars and also to planetary protection, the need to protect Mars from Earth life if we wish to study native life in the habitats in its original state.
 
==Lichens relying on 10075% night time humidithumidity===
 
The lichens studied in these experiments have protection from UV light due to special pigments only found in lichens, such as parietin and antioxidants such as b-carotene in epilithic lichens. This gives them enough protection to tolerate the light levels in conditions of partial shade in the simulation chambers and make use of the light to photosynthesize. Indeed, UV protection pigments have been suggested as potential biomarkers to search for on Mars.<ref>"Solar radiation is the primary energy source for surface planetary life, so that pigments are fundamental components of any surface-dwelling organism. They may therefore have evolved in some form on Mars as they did on Earth." {{cite journal | doi = 10.1017/S1473550402001039 | volume=1 | pages=39 | title=Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces | year=2002 | journal=International Journal of Astrobiology | last1 = Wynn-Williams | first1 = D.D. | last2 = Edwards | first2 = H.G.M. | last3 = Newton | first3 = E.M. | last4 = Holder | first4 = J.M.| bibcode=2002IJAsB...1...39W }}</ref>
Line 12:
When exposed to full UV levels in a 34-day experiment in a Mars simulation chamber at DLR, the fungus component of the lichen Pleopsidium chlorophanum died, and it wasn't clear if the algae component was still photosynthesizing.
 
However, when partially shaded from the UV light, as forit is in its natural habitats in Antarctica, both fungus and algae survived, and the algae remained photosynthetically active throughout. Also new growth of the lichen was observed. Photosynthetic activity continued to increase for the duration of the experiment, showing that the lichen adapted to the Mars conditions.
 
In this experiment the temperature varied between +21&nbsp;°C and -50&nbsp;°C. Relative humidity is higher in cold air, for the same concentrations of water vapour, and as the temperature varied, the relative humidity varied between 0.1% and 75%. The atmosphere consisted of 5% CO<sub>2</sub>,4%N<sub>2</sub>, and 1% O<sub>2</sub> at 800 Pa or about 0.79% of Earth's sea level atmospheric pressure. This approximates conditions that are encountered in the equatorial and lower lattitude regions of Mars.
This is remarkable as the fungus is an aerobe, growing in an atmosphere with no appreciable amount of oxygen and 95% CO<sub>2</sub>. It seems that the algae provides it with enough oxygen to survive. The lichen was grown in Sulfatic Mars Regolith Simulant - igneous rock with composition similar to Mars meteorites, consisting of gabbro and olivine, to which quartz and anhydrous iron oxide hematite (the only thermodynamically stable iron oxide under present day Mars conditions) were added. It also contains gypsum and geothite, and was crushed to simulate the martian regolith. This was an ice free environment. They found that photosynthetic activity was strongly correlated with the beginning and the end of the simulated Martian day. Those are times when atmospheric water vapour could condense on the soil and be absorbed by it, and could probably also form cold brines with the salts in the simulated martian regolith. The pressure used for the experiment was 700 - 800 Pa, above the triple point of pure water at 600 Pa and consistent with the conditions measured by Curiosity in Gale crater.<ref name="de VeraSchulze-Makuch2014">{{cite journal|url=https://www.researchgate.net/profile/Jean-Pierre_de_Vera/publication/258227207_Adaptation_of_an_Antarctic_lichen_to_Martian_niche_conditions_can_occur_within_34_days/links/00b4952e11f3088291000000.pdf|last1=de Vera|first1=Jean-Pierre|last2=Schulze-Makuch|first2=Dirk|last3=Khan|first3=Afshin|last4=Lorek|first4=Andreas|last5=Koncz|first5=Alexander|last6=Möhlmann|first6=Diedrich|last7=Spohn|first7=Tilman|title=Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days|journal=Planetary and Space Science|volume=98|year=2014|pages=182–190|issn=0032-0633|doi=10.1016/j.pss.2013.07.014|bibcode=2014P&SS...98..182D}}</ref>
 
TheThis experimentersis concludedremarkable thatas itthe fungus is likelyan thataerobe, somegrowing lichensin an atmosphere with no appreciable amount of oxygen and cyanobacteria95% canCO<sub>2</sub>. adaptIt seems that the algae provides it with enough oxygen to survive. The lichen was grown in Sulfatic Mars conditions,Regolith takingSimulant - igneous rock with composition similar to Mars meteorites, advantageconsisting of gabbro and olivine, to which quartz and anhydrous iron oxide hematite (the nightonly timethermodynamically stable iron oxide under present day Mars conditions) were added. It also contains gypsum and humiditygeothite, and thatwas itcrushed isto possiblesimulate the martian regolith. This was an ice free environment. They found that lifephotosynthetic fromactivity earlywas Marsstrongly correlated with the beginning and the end of the simulated Martian day. Those are times when atmospheric water vapour could havecondense adaptedon tothe thesesoil conditionsand be absorbed by it, and stillcould surviveprobably todayalso form cold brines with the salts in micronichesthe onsimulated martian regolith. The pressure used for the surfaceexperiment was 700 - 800 Pa, above the triple point of pure water at 600 Pa and consistent with the conditions measured by Curiosity in Gale crater.<ref name="DLRLichenHabitable">{{cite journal|url=https://core.ac.uk/download/pdf/31019036.pdf|last1=de Vera|first1=Jean-Pierre|last2=Schulze-Makuch|first2=Dirk|last3=Khan|first3=Afshin|last4=Lorek|first4=Andreas|last5=Koncz|first5=Alexander|last6=Möhlmann|first6=Diedrich|last7=Spohn|first7=Tilman|title=Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days|journal=Planetary and Space Science|volume=98|year=2014|pages=182–190|issn=003206330032-0633|doi=10.1016/j.pss.2013.07.014|bibcode=2014P&SS...98..182D|quote=This work strongly supports the interconnected notions (i) that terrestrial life most likely can adapt physiologically to live on Mars (hence justifying stringent measures to prevent human activities from contaminating / infecting Mars with terrestrial organisms); (ii) that in searching for extant life on Mars we should focus on "protected putative habitats"; and (ii) that early-originating (Noachian period) indigenous Martian life might still survive in such micro-niches despite Mars' cooling and drying during the last 4 billion years|bibcode=2014P&SS...98..182D}}</ref>
 
The experimenters concluded that it is likely that some lichens and cyanobacteria can adapt to Mars conditions, taking advantage of the night time humidity, and that it is possible that life from early Mars could have adapted to these conditions and still survive today in microniches on the surface.
 
==Black fungi and black yeast relying on 100% night time humidity==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu