Possible present day habitats for life on Mars (Including potential Mars special regions): Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
Line 695:
 
In the 2014 MEPAG classification of special regions, ionizing radiation was not considered limiting for classifying the "Special regions" where present day surface life might survive.<ref name="RummelBeaty2014SpecialRegionsConclusion">{{cite journal|last1=Rummel|first1=John D.|last2=Beaty|first2=David W.|last3=Jones|first3=Melissa A.|last4=Bakermans|first4=Corien|last5=Barlow|first5=Nadine G.|last6=Boston|first6=Penelope J.|last7=Chevrier|first7=Vincent F.|last8=Clark|first8=Benton C.|last9=de Vera|first9=Jean-Pierre P.|last10=Gough|first10=Raina V.|last11=Hallsworth|first11=John E.|last12=Head|first12=James W.|last13=Hipkin|first13=Victoria J.|last14=Kieft|first14=Thomas L.|last15=McEwen|first15=Alfred S.|last16=Mellon|first16=Michael T.|last17=Mikucki|first17=Jill A.|last18=Nicholson|first18=Wayne L.|last19=Omelon|first19=Christopher R.|last20=Peterson|first20=Ronald|last21=Roden|first21=Eric E.|last22=Sherwood Lollar|first22=Barbara|last23=Tanaka|first23=Kenneth L.|last24=Viola|first24=Donna|last25=Wray|first25=James J.|title=A New Analysis of Mars "Special Regions": Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)|journal=Astrobiology|volume=14|issue=11|year=2014|pages=887–968|issn=1531-1074|doi=10.1089/ast.2014.1227|pmid=25401393|bibcode=2014AsBio..14..887R|url=|quote=Finding 3-8: From MSL RAD measurements, ionizing radiation from GCRs at Mars is so low as to be negligible.
Intermittent SPEs can increase the atmospheric ionization down to ground level and increase the total dose, but these events are sporadic and last at most a few (2–5) days. These facts are not used to distinguish Special Regions on Mars" and ""Over a 500-year time frame, the martian surface could be estimated to receive a cumulative ionizing radiation dose of less than 50 Gy, much lower than the LD 90 (lethal dose where 90% of subjects would die) for even a radiation-sensitive bacterium such as E. coli (LD 90 of *200–400 Gy). Accordingly, it can be stated that the RAD data show that the total surface flux of ionizing radiation is so low as to exert only a negligible impact on microbial viability during a 500-year time frame. These findings were in very good agreement with modeling studies"}}</ref>
{{quote|" From MSL RAD measurements, ionizing radiation from GCRs at Mars is so low as to be negligible. Intermittent SPEs can increase the atmospheric ionization down to ground level and increase the total dose, but these events are sporadic and last at most a few (2–5) days. These facts are not used to distinguish Special Regions on Mars" and "Over a 500-year time frame, the martian surface could be estimated to receive a cumulative ionizing radiation dose of less than 50 Gy, much lower than the LD 90 (lethal dose where 90% of subjects would die) for even a radiation-sensitive bacterium such as E. coli (LD 90 of *200–400 Gy). Accordingly, it can be stated that the RAD data show that the total surface flux of ionizing radiation is so low as to exert only a negligible impact on microbial viability during a 500-year time frame. These findings were in very good agreement with modeling studies"}}
In more detail they explain:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu