Watch InSight's successful landing on Mars

From Astrobiology Wiki
Revision as of 02:23, 27 November 2018 by Robertinventor (talk | contribs)
Jump to navigation Jump to search

Coverage began at 2 p.m. Eastern (7 p.m. UTC). Landing started about 40 minutes later, the entire landing telemetry was streamed live through the briefcase sized Mars Cube One interplanetary "cube sats", and at around 3.01 p.m. EST they got first confirmation of the landing. First image from the surface arrived several minutes later, relayed through the cube sats, and the landing went without a hitch. See the timeline here NASA Landing on Mars milestones

Insight post landing press briefing recap

Archived live broadcast of the landing

Inside Mission control with 360 degree vision during the EDL
For more details: Watch Online
First image from the Mars Insight lander. The dusty lens cover will be removed - it was there to protect the camera from dust thrown up by the landing itself

Some points of interest about this mission:

InSight lander artistic impression
  • For astrobiologists, one particularly interesting thing about this lander is that it is the first one to use a robotic mole. It will drill to a depth of 16 feet (about 5 meters). This is of interest for astrobiology, especially for the search for past life. ExoMars will be able to drill to 2 meters using a different technique and nothing else has been able to drill to anything like this depth. Viking scraped a shallow trench and most just drill mms into rocks. For Insight though it's not an astrobiology mission, it's drilling in order to get a heat profile depending on depth. But it is the first test of robotic mole technology on Mars. The UK Beagle 2 lander was the first and only previous mission to send a small robotic mole to Mars, it landed successfully but sadly wasn't able to open the last of its solar panels and signal back to Earth. It is pioneering technology that could be useful for future astrobiological missions to Mars, though sadly Mars 2020 won't have a drill able to drill to any significant depth. ExoMars will, to a depth of 2 meters, but using a different method. In the press conferences they said that the self hammering mole can nudge its way past rocks of up to 2 cms width, can also get past rocks that present a slanting face but if it hits a flat rock face on it just has to stop. Where it landed they think it can probably reach to a depth of about 10 feet and possibly the full depth of 16 feet (5 meters). That would be a useful depth for searches for organics of past life not deteriorated by the cummulative effects of hundreds of millions to billions of years of surface cosmic radiation.

Its seismometer may even be able to detect liquid water or magma plumes from active volcanoes below the surface. See Measuring the Pulse of Mars (NASA)

Speculation: I've wondered if their seismometer will be able to detect the layer of brines that Curiosity found just a few cms below the surface - through its recording of the reverberations of the self hammering mole which they said could give them some insights into the structure of the land. The self hammering mole will also be releasing pulses of heat and recording how they are transmitted with temperature sensors all along its cable as it descends. Curiosity found that it forms every day overnight and dries out in the daytime as it warms up below the sand dunes. Not sure but the Elysia Planitium might be suitable ground for it to form. Could the mole detect these?

  • NASA's InSight mission picks perfectly dull landing site - unlike most landers, the aim is to be dull :). They aren't looking for interesting and varied geology or places where there could be past or present day life, indeed, the more typical and boring it is, the better for their mission objective to find out about Mars's interior.
"This artist’s concept shows InSight landed safely on the Elysium Planitia region of the Red Planet." NASA/JPL-Caltech

The lander also has a weather station which will be the first one to operate continuously, both day and night on Mars instead of just a few readings a day. It will record temperature, pressure, and wind direction and speed continuously. The reason is because the seismometer will be affected by all these things, it is so sensitive that it will record even deflections of the surface due to passage over of a pressure variation in the atmosphere. As a side effect this means that we have the first continuous measurements from Mars which may well turn up surprising discoveries.

Landing ellipse in Elysium Planitia, Mars Odyssey orbiter image, NASA/JPL-Caltech
  • How will NASA know when InSight touches down? - this also mentions an interesting first - first mission to Mars that will deploy cubesats into Mars orbit. They can relay back themselves and they can also maybe even take a photograph of the lander on the surface immediately after a successful landing (or of the crash site if it crashes, to help them figure out what happened). First interplanetary cube sats
Mars Cube One - the two briefcase sized 'cube sats' which succcessfully relayed back telemetry and also the first image from the surface. They were on a separate trajectory and did a flyby of Mars and then headed off into interplanetary space.
Landing site - notice how close it is to the equator, NASA/JPL-Caltech
Landing site again. It lands about 600 km away from Curiosity in Gale crater, NASA/JPL-Caltech
Mars Cube One shows the antenna array and the two solar panels to either side. It also has wide and narrow-field cameras, and a star tracker, and it can relay data back at one kilobyte /sec to Earth (so one megabyte would take 16 2/3 minutes to transmit). NASA-JPL

The Mars cubesats actually were sent to Mars on their own independent trajectories using tiny thrusters for course corrections. The big antenna is used to communicate back to Earth, a design that lets them focus the signal with a flat antenna. There is a small receiver to receive signals from Insight in the base of the satellite that deploys on springs. They communicate independently back to Earth too, the cubesats could fly to Mars by themselves so are true interplanetary cube sats. They are each about the size of a large briefcase and they are technology demonstrators. If they are successful then we may get direct transmission back to Earth of the Entry, Descent and Landing, which would arrive about three hours earlier than the signal relayed from its orbiters which will record it and then retransmit.

  • InSight Diary: The silence of space - exceedingly sensitive seismometers, so senstivie they couldn't find anywhere on Earth quiet enough to test them, when the tested them deep in a mine in the Black forest in Germany the strongest signal was from the sea, hundreds of miles away - which would be far stronger than any feeble Mars quakes. They could only really test them once they were in flight on the way to Mars.
  • The Viking Seismometers - how both Viking missions carried seismometers but they were only able to measure really major quakes. Viking 1 was not able to uncage its seismometer. The Viking 2 one did uncage but only spotted wind data apart from one signal that may have been a Mars quake. Showed that with 95% confidence, Mars is less active than Earth.
Possible Mars quake from Viking sol 8. If it was, the P and S waves are labeled and 2 and 3 are possible reflections from the bottom of the Mars crust. This is the only previous recording of a possible Mars quake as Viking 1 didn't deploy properly and the Viking 2 one wasn't sensitive enough to detect the quakes InSight hopes to find. NASA-JPL

Entry, descent and landing sequence

After landing, deploys the seismometer, and then the robotic mole experiments by lifting them onto the surface of Mars. The Viking seismometers were mounted on the spacecraft, this one is placed directly on the surface of Mars. This is hugely speeded up, the actual deployment takes about one month for each instrument and they should be ready to start measurement in spring 2019. Then it depends on how many Mars quakes there are but they expect the main science results in a preliminary way two years from now.

They expect also to detect impacts of Martian meteorites; one of their objectives will be to get a better idea of the impact rate. The seismometers will be able to detect even the one cm or so rise and fall of the surface due to passage over of Phobos the innermost tiny moon of Mars which will also help them make discoveries about the Mars interior. They can also detect the orientation of Mars - the RISE (Rotation and Interior Structure Experiment) experiment can detect the slight wobble of the north pole as the gravity of the sun tugs at it during Mars's elliptical orbit which will help decide if Mars has a liquid core and how large it is. the Reflexes of Mars

Cookies help us deliver our services. By using our services, you agree to our use of cookies.