List of microorganisms tested in outer space

From Astrobiology Wiki
Jump to navigation Jump to search

0% vetted

   

The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli, Staphylococcus, and Enterobacter aerogenes into orbit.[1] A large number of microorganisms have been selected for exposure experiments since, as listed in the table below.

Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency.[1]

It is possible to classify these microorganisms into two groups, the human-borne, and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space.[2] NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies.[3] They are also nearly everywhere in the environment, and although normally invisible, can form slimy biofilms.[3]

Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost.[4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many of the experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia),[2] or their survival on Mars for understanding the likelihood of past or present life on that planet.[2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures.[5]

Research and testing of microorganisms in outer space could eventually be applied for directed panspermia or terraforming.

Table[edit | hide | hide all]

  indicates testing conditions
Organism Type of test References
Low Earth
orbit
Impact event and planetary ejection Atmospheric reentry Simulated
conditions
Bacteria & bacterial spores
Actinomyces erythreus
[6]
Aeromonas proteolytica
[7]
Anabaena cylindrica (akinetes)
[8]
Azotobacter chroococcum
[9]
Azotobacter vinelandii
[10]
Bacillus cereus
[11]
Bacillus megaterium
[12]
Bacillus mycoides
[13]
Bacillus pumilus
[13][14]
Bacillus subtilis
[15][16][17][18][19]
Bacillus thuringiensis
[7]
Carnobacterium
[20]
Chroococcidiopsis
[21][22][23][24]
Clostridium botulinum
[12]
Clostridium butyricum
[25][26]
Clostridium celatum
[26]
Clostridium mangenotii
[26]
Clostridium roseum
[26]
Deinococcus geothermalis
[27]
Deinococcus radiodurans
[28][29][30]
Enterobacter aerogenes
[31]
Escherichia coli
[12][26][32][33]
Gloeocapsa
[24]
Gloeocapsopsis pleurocapsoides
[34]
Haloarcula-G
[35]
Hydrogenomonas eutropha
[32]
Klebsiella pneumoniae
[12]
Kocuria rosea
[36]
Lactobacillus plantarum
[37]
Leptolyngbya
[34]
Luteococcus japonicus
[38]
Micrococcus luteus
[38]
Nostoc commune
[24][39]
Nostoc microscopicum
[34]
Photobacterium
[38]
Pseudomonas aeruginosa
[3][37]
Pseudomonas fluorescens
[37]
Rhodococcus erythropolis
[40]
Rhodospirillum rubrum
[10]
Salmonella enterica
[41]
Serratia marcescens
[11]
Serratia plymuthica
[42]
Staphylococcus aureus
[25][37]
Streptococcus mutans
[43]
Streptomyces albus
[37]
Streptomyces coelicolor
[43]
Synechococcus (halite)
[35][44][45]
Symploca
[34]
Tolypothrix byssoidea
[34]
Archaea
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Halobacterium noricense
[46][47]
Halobacterium salinarum
[43]
Halococcus dombrowskii
[46]
Halorubrum chaoviatoris
[45][48]
Methanosarcina sp. SA-21/16
[49]
Methanobacterium MC-20
[49]
Methanosarcina barkeri
[49]
Fungi and algae
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspergillus niger
[38]
Aspergillus oryzae
[28][38]
Aspergillus terreus
[50]
Aspergillus versicolor
[51]
Chaetomium globosum
[7]
Cladosporium herbarum
[52]
Cryomyces antarcticus
[53][54]
Cryomyces minteri
[53]
Euglena gracilis
[55][56][57][58]
Mucor plumbeus
[38]
Nannochloropsis oculata
[59][60][61]
Penicillium roqueforti
[15]
Rhodotorula mucilaginosa
[38]
Sordaria fimicola
[62]
Trebouxia
[63]
Trichoderma koningii
[48]
Trichoderma longibrachiatum
[64]
Trichophyton terrestre
[7]
Ulocladium atrum
[18]
Lichens
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspicilia fruticulosa
[65]
Buellia frigida
[66]
Circinaria gyrosa
[63][67]
Rhizocarpon geographicum
[63][68]
Rosenvingiella
[24]
Xanthoria elegans
[69][70][71][72][73]
Xanthoria parietina
[70]
Bacteriophage/virus
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
T7 phage
[7]
Canine hepatitis
[74]
Influenza PR8
[74]
Tobacco mosaic virus
[43][74]
Vaccinia virus
[74]
Yeast
Rhodotorula rubra
[7]
Saccharomyces cerevisiae
[7]
Saccharomyces ellipsoides
[32]
Zygosaccharomyces bailii
[32]
Animals
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Caenorhabditis elegans
(nematode)
[75][76]
Hypsibius dujardini
(tardigrade)
[77][78]
Milnesium tardigradum
(tardigrade)
[79][80][81]
Richtersius coronifer
(tardigrade)
[79][82]
Mniobia russeola
(metazoan)
[82]

See also[edit | hide]

Misc
Low Earth orbit missions

References[edit | hide]

  1. 1.0 1.1 Love, Shayla (2016-10-26). "Bacteria get dangerously weird in space". The Independent. Retrieved 2016-10-27. 
  2. 2.0 2.1 2.2 Olsson-Francis, K.; Cockell, C. S. (2010). "Experimental methods for studying microbial survival in extraterrestrial environments" (PDF). Journal of Microbiological Methods. 80 (1): 1–13. doi:10.1016/j.mimet.2009.10.004. PMID 19854226. 
  3. 3.0 3.1 3.2 NASA – Spaceflight Alters Bacterial Social Networks (2013)
  4. Rothschild, L. J.; Mancinelli, R. L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–101. Bibcode:2001Natur.409.1092R. doi:10.1038/35059215. PMID 11234023. 
  5. Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode:2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID 22680693. 
  6. Dublin, M.; Volz, P. A. (1973). "Space-related research in mycology concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode:1973SLSci...4..223D. doi:10.1007/BF00924469. PMID 4598191. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences and Space Research. 13: 135–41. PMID 11913418. 
  8. Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions". Origins of Life and Evolution of Biospheres. 39 (6): 565–579. Bibcode:2009OLEB...39..565O. doi:10.1007/s11084-009-9167-4. 
  9. Moll, D. M.; Vestal, J. R. (1992). "Survival of microorganisms in smectite clays: Implications for Martian exobiology". Icarus. 98 (2): 233–9. Bibcode:1992Icar...98..233M. doi:10.1016/0019-1035(92)90092-L. PMID 11539360. 
  10. 10.0 10.1 Roberts, T. L.; Wynne, E. S. (1962). "Studies with a simulated Martian environment". Journal of the Astronautical Sciences. 10: 65–74. 
  11. 11.0 11.1 Hagen, C. A.; Hawrylewicz, E. J.; Ehrlich, R. (1967). "Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores". Applied Microbiology. 15 (2): 285–291. PMC 546892Freely accessible. PMID 4961769. 
  12. 12.0 12.1 12.2 12.3 Hawrylewicz, E.; Gowdy, B.; Ehrlich, R. (1962). "Micro-organisms under a Simulated Martian Environment". Nature. 193 (4814): 497. Bibcode:1962Natur.193..497H. doi:10.1038/193497a0. 
  13. 13.0 13.1 Imshenetskiĭ, A. A.; Murzakov, B. G.; Evdokimova, M. D.; Dorofeeva, I. K. (1984). "Survival of bacteria in the Artificial Mars unit". Mikrobiologiia. 53 (5): 731–7. PMID 6439981. 
  14. Horneck, G. (2012). "Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission". Astrobiology. 12 (5): 445–56. Bibcode:2012AsBio..12..445H. doi:10.1089/ast.2011.0737. PMC 3371261Freely accessible. PMID 22680691. 
  15. 15.0 15.1 Hotchin, J.; Lorenz, P.; Hemenway, C. (1965). "Survival of Micro-Organisms in Space". Nature. 206 (4983): 442–445. Bibcode:1965Natur.206..442H. doi:10.1038/206442a0. 
  16. Horneck, G.; Bücker, H.; Reitz, G. (1994). "Long-term survival of bacterial spores in space". Advances in Space Research. 14 (10): 41–5. Bibcode:1994AdSpR..14...41H. doi:10.1016/0273-1177(94)90448-0. PMID 11539977. 
  17. Fajardo-Cavazos, P.; Link, L.; Melosh, H. J.; Nicholson, W. L. (2005). "Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia". Astrobiology. 5 (6): 726–36. Bibcode:2005AsBio...5..726F. doi:10.1089/ast.2005.5.726. PMID 16379527. 
  18. 18.0 18.1 Brandstätter, F. (2008). "Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment". Planetary and Space Science. 56 (7): 976–984. Bibcode:2008P&SS...56..976B. doi:10.1016/j.pss.2007.12.014. 
  19. Wassmann, M. (2012). "Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E". Astrobiology. 12 (5): 498–507. Bibcode:2012AsBio..12..498W. doi:10.1089/ast.2011.0772. PMID 22680695. 
  20. Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C. (24 December 2012). "Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars". PNAS USA. 110 (2): 666–671. Bibcode:2013PNAS..110..666N. doi:10.1073/pnas.1209793110. PMC 3545801Freely accessible. Retrieved 2015-09-27. 
  21. Cockell, C. S.; Schuerger, A. C.; Billi, D.; Imre Friedmann, E.; Panitz, C. (2005). "Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029". Astrobiology. 5 (2): 127–140. Bibcode:2005AsBio...5..127C. doi:10.1089/ast.2005.5.127. PMID 15815164. 
  22. Billi, D. (2011). "Damage Escape and Repair in DriedChroococcidiopsisspp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions". Astrobiology. 11 (1): 65–73. Bibcode:2011AsBio..11...65B. doi:10.1089/ast.2009.0430. PMID 21294638. 
  23. Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (20 August 2013). "The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes". Acta Astronautica. 91: 180–186. Bibcode:2013AcAau..91..180B. doi:10.1016/j.actaastro.2013.05.015. 
  24. 24.0 24.1 24.2 24.3 24.4 Cockell, Charles S.; Rettberg, Petra; Rabbow, Elke; Olson-Francis, Karen (19 May 2011). "Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth". The ISME Journal. 5 (10): 1671–1682. doi:10.1038/ismej.2011.46Freely accessible. PMC 3176519Freely accessible. PMID 21593797. Retrieved 2015-05-10. 
  25. 25.0 25.1 Parfenov, G. P.; Lukin, A. A. (1973). "Results and prospects of microbiological studies in outer space". Space Life Sciences. 4 (1): 160–179. Bibcode:1973SLSci...4..160P. doi:10.1007/BF02626350. 
  26. 26.0 26.1 26.2 26.3 26.4 Koike, J. (1996). "Fundamental studies concerning planetary quarantine in space". Advances in Space Research. 18 (1–2): 339–44. Bibcode:1996AdSpR..18..339K. doi:10.1016/0273-1177(95)00825-Y. PMID 11538982. 
  27. BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests. EPSC Abstracts. Vol. 8, EPSC2013-930, 2013. European Planetary Science Congress 2013.
  28. 28.0 28.1 Dose, K. (1995). "ERA-experiment "space biochemistry"". Advances in Space Research. 16 (8): 119–29. Bibcode:1995AdSpR..16..119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696. 
  29. Mastrapa, R. M. E; Glanzberg, H.; Head, J. N; Melosh, H. J; Nicholson, W. L (2001). "Survival of bacteria exposed to extreme acceleration: Implications for panspermia". Earth and Planetary Science Letters. 189 (1–2): 1–8. Bibcode:2001E&PSL.189....1M. doi:10.1016/S0012-821X(01)00342-9. 
  30. De La Vega, U. P.; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research. 40 (11): 1672–1677. Bibcode:2007AdSpR..40.1672D. doi:10.1016/j.asr.2007.05.022. 
  31. Young, R. S.; Deal, P. H.; Bell, J.; Allen, J. L. (1964). "Bacteria under simulated Martian conditions". Life Sciences and Space Research. 2: 105–11. PMID 11881642. 
  32. 32.0 32.1 32.2 32.3 Grigoryev, Y. G. (1972). "Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea". Life Sciences and Space Research. 10: 113–8. PMID 11898831. 
  33. Willis, M.; Ahrens, T.; Bertani, L.; Nash, C. (2006). "Bugbuster—survivability of living bacteria upon shock compression". Earth and Planetary Science Letters. 247 (3–4): 185–196. Bibcode:2006E&PSL.247..185W. doi:10.1016/j.epsl.2006.03.054. 
  34. 34.0 34.1 34.2 34.3 34.4 de Vera, J. P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Pocs, T. (17 October 2013). "Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions". International Journal of Astrobiology. 13: 35–44. Bibcode:2014IJAsB..13...35D. doi:10.1017/S1473550413000323. 
  35. 35.0 35.1 Mancinelli, R. L.; White, M. R.; Rothschild, L. J. (1998). "Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment". Advances in Space Research. 22 (3): 327–334. Bibcode:1998AdSpR..22..327M. doi:10.1016/S0273-1177(98)00189-6. 
  36. Imshenetskiĭ, A. A.; Kuzyurina, L. A.; Yakshina, V.M. (1979). "Xerophytic microorganisms multiplying under conditions close to Martian ones". Mikrobiologiia. 48 (1): 76–9. PMID 106224. 
  37. 37.0 37.1 37.2 37.3 37.4 Hawrylewicz, E.; Hagen, C. A.; Tolkacz, V.; Anderson, B. T.; Ewing, M. (1968). "Probability of growth pG of viable microorganisms in Martian environments". Life Sciences and Space Research VI. pp. 146–156. 
  38. 38.0 38.1 38.2 38.3 38.4 38.5 38.6 Zhukova, A. I.; Kondratyev, I. I. (1965). "On artificial Martian conditions reproduced for microbiological research". Life Sciences and Space Research. 3: 120–6. PMID 12199257. 
  39. Jänchena, Jochen; Feyha, Nina; Szewzyka, Ulrich; de Vera, Jean-Pierre P. (3 August 2015). "Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions". International Journal of Astrobiology. 15 (2): 107–118. Bibcode:2016IJAsB..15..107J. doi:10.1017/S147355041500018XFreely accessible. Retrieved 2015-08-17. 
  40. Burchell, M. (2001). "Survivability of Bacteria in Hypervelocity Impact". Icarus. 154 (2): 545–547. Bibcode:2001Icar..154..545B. doi:10.1006/icar.2001.6738. 
  41. Raktim, Roy; Phani, Shilpa P.; Sangram, Bagh (1 September 2016). "A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions". Astrobiology. 16 (9): 677–689. Bibcode:2016AsBio..16..677R. doi:10.1089/ast.2015.1420. PMID 27623197. 
  42. Roten, C. A.; Gallusser, A.; Borruat, G. D.; Udry, S. D.; Karamata, D. (1998). "Impact resistance of bacteria entrapped in small meteorites". Bulletin de la Société Vaudoise des Sciences Naturelles. 86 (1): 1–17. 
  43. 43.0 43.1 43.2 43.3 Koike, J.; Oshima, T.; Kobayashi, K.; Kawasaki, Y. (1995). "Studies in the search for life on Mars". Advances in Space Research. 15 (3): 211–4. Bibcode:1995AdSpR..15..211K. doi:10.1016/S0273-1177(99)80086-6. PMID 11539227. 
  44. "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Retrieved 2013-08-07. 
  45. 45.0 45.1 Mancinelli, R. L. (January 2015). "The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 123–128. Bibcode:2015IJAsB..14..123M. doi:10.1017/S147355041400055X. Retrieved 2015-05-09. 
  46. 46.0 46.1 Stan-Lotter, H. (2002). "Astrobiology with haloarchaea from Permo-Triassic rock salt". International Journal of Astrobiology. 1 (4): 271–284. Bibcode:2002IJAsB...1..271S. doi:10.1017/S1473550403001307. 
  47. Extreme Halophiles Are Models for Astrobiology Archived 2011-07-22 at the Wayback Machine.. Shiladitya DasSarma, American Society for Microbiology.
  48. 48.0 48.1 "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Retrieved 2013-08-07. 
  49. 49.0 49.1 49.2 Morozova, D.; Möhlmann, D.; Wagner, D. (2006). "Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions". Origins of Life and Evolution of Biospheres. 37 (2): 189–200. Bibcode:2007OLEB...37..189M. doi:10.1007/s11084-006-9024-7. 
  50. Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A.C. (2011). "Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation". Planetary and Space Science. 59: 63–78. Bibcode:2011P&SS...59...63S. doi:10.1016/j.pss.2010.11.002. 
  51. Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S. (January 2015). "Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment" (PDF). International Journal of Astrobiology. 14: 137–142. Bibcode:2015IJAsB..14..137N. doi:10.1017/S1473550414000731. Retrieved 2015-05-09. 
  52. Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, .P.S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A.D.; Kakabakos, S.; Cefalas, A.C. (2014). ""Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum"". Journal of Applied Physics. 116 (10): 104701. Bibcode:2014JAP...116j4701S. doi:10.1063/1.4894621. 
  53. 53.0 53.1 Wall, Mike (January 29, 2016). "Fungi Survive Mars-Like Conditions On Space Station". Space.com. Retrieved 2016-01-29. 
  54. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests. Claudia Pacelli, Laura Selbmann, Laura Zucconi, Jean-Pierre De Vera, Elke Rabbow, Gerda Horneck, Rosa de la Torre, Silvano Onofri. Origins of Life and Evolution of Biospheres. June 2017, Volume 47, Issue 2, pp 187–202
  55. Aquacells — Flagellates under long-term microgravity and potential usage for life support systems. Häder, DP., Richter, P.R., Strauch, S.M. et al. Microgravity Sci. Technol (2006) 18: 210. doi:10.1007/BF02870411
  56. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Nasir, A. , Strauch, S. M., Becker, I. , Sperling, A. , Schuster, M. , Richter, P. R., Weißkopf, M. , Ntefidou, M. , Daiker, V. , An, Y. A., Li, X. Y., Liu, Y. D., Lebert, M. and Legué, V. (2014)- Plant Biol J, 16: 113-119. doi:10.1111/plb.12067
  57. Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments. Sebastian M. Strauch, Ina Becker, Laura Pölloth, Peter R. Richter., et al. International Journal of Astrobiology. Volume 17, Issue 2, April 2018 , pp. 101-111. doi:10.1017/S1473550417000131
  58. The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights Strauch, S. M., Richter, P., Schuster, M., & Häder, D. P. (2010). Journal of plant physiology, 167(1), 41-46. doi:10.1016/j.jplph.2009.07.009
  59. Pasini, J. L. S.; Price, M. C. (2015). Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events (PDF). 46th Lunar and Planetary Science Conference. 
  60. Pasini D. L. S. et al. LPSC44, 1497. (2013).
  61. Pasini D. L. S. et. al. EPSC2013, 396. (2013).
  62. Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R. (1994). "First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores". Advances in Space Research. 14 (10): 47–51. Bibcode:1994AdSpR..14...47Z. doi:10.1016/0273-1177(94)90449-9. PMID 11539984. 
  63. 63.0 63.1 63.2 Sánchez, Francisco Javier; Meeßen, Joachim; Ruiza, M. del Carmen; Sancho, Leopoldo G.; de la Torre, Rosa (6 September 2013). "UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances". International Journal of Astrobiology. 13 (1): 1–18. Bibcode:2014IJAsB..13....1S. doi:10.1017/S147355041300027X. Retrieved 2015-05-10. 
  64. Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna; Horneck, Gerda (January 2015). "Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 129–135. Bibcode:2015IJAsB..14..129N. doi:10.1017/S1473550414000408. Retrieved 2015-05-09. 
  65. Raggio, J. (2011). "Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa". Astrobiology. 11 (4): 281–92. Bibcode:2011AsBio..11..281R. doi:10.1089/ast.2010.0588. PMID 21545267. 
  66. Meeßen, J.; Wuthenow, P.; Schille, P.; Rabbow, E.; de Vera, J.-P.P (August 2015). "Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability". Astrobiology. 15 (8): 601–615. Bibcode:2015AsBio..15..601M. doi:10.1089/ast.2015.1281. PMC 4554929Freely accessible. PMID 26218403. Retrieved 2015-08-17. 
  67. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa. de la Torre Rosa, Miller Ana Zélia, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, and Meeßen Joachim. Astrobiology. February 2017, 17(2): 145-153.
  68. de La Torre Noetzel, R. (2007). "BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem". Advances in Space Research. 40 (11): 1665–1671. Bibcode:2007AdSpR..40.1665D. doi:10.1016/j.asr.2007.02.022. 
  69. Sancho, L. G. (2007). "Lichens survive in space: Results from the 2005 LICHENS experiment". Astrobiology. 7 (3): 443–54. Bibcode:2007AsBio...7..443S. doi:10.1089/ast.2006.0046. PMID 17630840. 
  70. 70.0 70.1 De Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S. (2004). "The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions". Advances in Space Research. 33 (8): 1236–43. Bibcode:2004AdSpR..33.1236D. doi:10.1016/j.asr.2003.10.035. PMID 15806704. 
  71. Horneck, G. (2008). "Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257. 
  72. Brandt, Annette; De Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde (2014). "Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS". International Journal of Astrobiology. 14 (3): 411–425. Bibcode:2015IJAsB..14..411B. doi:10.1017/S1473550414000214. 
  73. Horneck G.; et al. (2008). "Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257. 
  74. 74.0 74.1 74.2 74.3 Hotchin, J. (1968). "The Microbiology of Space". Journal of the British Interplanetary Society. 21: 122. Bibcode:1968JBIS...21..122H. 
  75. Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. (PDF). Akira Higashibata, Nathaniel J. Szewczyk, Catharine A. Conley, Mari Imamizo-Sato, Atsushi Higashitani, and Noriaki Ishioka. The Journal of Experimental Biology 209, 3209-3218 Published by The Company of Biologists 2006. doi:10.1242/jeb.02365
  76. [https://www.nasa.gov/mission_pages/station/research/experiments/644.html International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics). November 22, 2016.
  77. Pasini D. L. S. et al. LPSC45, 1789. (2014).
  78. Pasini D. L. S. et. al. EPSC2014, 67. (2014).
  79. 79.0 79.1 Jönsson, K. I.; Rabbow, E.; Schill, Ralph O.; Harms-Ringdahl, M.; Rettberg, P. (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. doi:10.1016/j.cub.2008.06.048. PMID 18786368. 
  80. "BIOKon In Space (BIOKIS)". NASA. 17 May 2011. Retrieved 2011-05-24. 
  81. Brennard, E. (17 May 2011). "Tardigrades: Water bears in space". BBC. Retrieved 2011-05-24. 
  82. 82.0 82.1 Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola. K. Ingemar Jönsson, Andrzej Wojcik. Astrobiology. February 2017, Vol. 17, No. 2: 163-167.

This article uses material from List of microorganisms tested in outer space on Wikipedia (view authors). License under CC BY-SA 3.0. Wikipedia logo
Cookies help us deliver our services. By using our services, you agree to our use of cookies.